
www.manaraa.com

0018-9162/00/$10.00 © 2000 IEEE24 Computer

Leveraging
Inconsistency
in Software
Development

I
n 1995, Michael Jackson accurately described software engineering as a
discipline of description.1 Software engineers make use of many descrip-
tions, including analysis models, specifications, designs, program code,
user guides, test plans, change requests, style guides, schedules, and
process models. But since different developers construct and update these

descriptions at different times during development, establishing and maintain-
ing consistency among descriptions presents several problems:

• descriptions vary greatly in their formality and precision;
• individual descriptions may themselves be ill-formed or self-contradictory;
• descriptions evolve throughout the life cycle at different rates; and
• checking consistency of a large, arbitrary set of descriptions is computa-

tionally expensive.

Checking the consistency of a large set of descriptions is a particularly diffi-
cult task. As our sets of descriptions grow, it very quickly becomes infeasible to
test their consistency. Furthermore, incremental or localized consistency strate-
gies do not guarantee global consistency. In practice, it may be possible to find
fast consistency checking techniques for specific types of description, but in the
general case the problem is truly intractable.

Existing approaches to this problem have been ad hoc or have only addressed
a limited part of the life cycle. Tools exist to check the consistency of specific
documents—object models, for example—but not for testing consistency
between these documents and other development artifacts. To make matters
worse, existing software development techniques assume consistency. And many
software development environments attempt to enforce it. Most developers view
inconsistency as undesirable, something to be avoided if at all possible. But most
also recognize that their descriptions are frequently inconsistent and learn to
live with these inconsistencies.

A systematic approach to managing inconsistency can help solve many of
these problems. Inconsistency draws attention to problem areas, which means
you can use inconsistency as a tool to

• improve the development team’s shared understanding,
• direct the process of requirements elicitation, and
• assist with verification and validation.

To turn inconsistency into a tool, however, inconsistency management must
become central to your development process.2

Maintaining
consistency at all times
is counterproductive. In
many cases, it may be
desirable to tolerate or
even encourage
inconsistency to
facilitate distributed
teamwork and prevent
premature commitment
to design decisions.

Bashar Nuseibeh
Imperial College

Steve Easterbrook
University of Toronto

Alessandra Russo
Imperial College

P E R S P E C T I V E S

www.manaraa.com

WHAT IS INCONSISTENCY?
We use the term inconsistency to denote any situa-

tion in which a set of descriptions does not obey some
relationship that should hold between them.3 The rela-
tionship between descriptions can be expressed as a
consistency rule against which the descriptions can be
checked. In current practice, some rules may be cap-
tured in descriptions of the development process; oth-
ers may be embedded in development tools. However,
the majority of such rules are not captured anywhere.

Here are three examples of consistency rules
expressed in English:

1. In a dataflow diagram, if a process is decom-
posed in a separate diagram, the input flows to
the parent process must be the same as the input
flows to the child dataflow diagram.

2. For a particular library system, the concept of an
operations document states that user and bor-
rower are synonyms. Hence, the list of user
actions described in the help manuals must cor-
respond to the list of borrower actions in the
requirements specification.

3. Coding should not begin until the Systems
Requirement Specification has been signed off
by the project review board. Hence, the program
code repository should be empty until the status
of the SRS is changed to “approved.”

The first rule applies to two descriptions written in
the same notation. The second rule describes a con-

sistency relationship that must be maintained between
three different documents. The third rule expresses a
relationship between the status of two descriptions to
ensure that they are consistent with the stated devel-
opment process.

The second and third rules reflect a common pat-
tern: A consistency relationship exists between two
descriptions because a third description says it should.
Problems occur if the three-way relationship is
untraceable or if you make changes to one of the three
descriptions without cross-checking the others. The
move toward better process modeling has helped to
ensure that more of the process relationships, such as
our third example, are documented.

Our definition of inconsistency is deliberately
broad. It allows you to manage inconsistency sys-
tematically across many different types of document,
without worrying about which notation has been used
for the individual descriptions.

THE MANAGEMENT FRAMEWORK
To clarify our understanding of inconsistency, we

developed the framework shown in Figure 1. Central
to this framework is the explicit use of a set of consis-
tency rules, which provide a basis for most inconsis-
tency management activities. The consistency rules are
used to monitor an evolving set of descriptions for
inconsistencies. When inconsistencies are detected, some
diagnosis is performed to locate and identify the cause.

At this point, you would choose from among sev-
eral different inconsistency-handling strategies, includ-

April 2000 25

Manage inconsistency

Analyze impact and riskMeasure inconsistency

Handle

Ignore

Consistency
checking

rules

Tolerate

Resolve

Defer

Circumvent

Ameliorate

Diagnose

M
o

n
it

o
r

fo
r

in
co

n
si

st
en

cy

Locate

Identify

Classify

Inconsistency
detected

Inconsistency
characterized

M
o

n
it

o
r

co
n

se
q

u
en

ce
s

o
f

h
an

d
lin

g
 a

ct
io

n
s

Apply rulesApply rules

Apply rules
Refine rules

Apply r
ules

Refin
e ru

les

Inconsistency
handled

Figure 1. A framework for managing inconsistency.

www.manaraa.com

26 Computer

ing resolving the inconsistency immediately,
ignoring it completely, or tolerating it for a
while. Whatever action you choose, the result
needs to be monitored for undesirable conse-
quences.

Checking consistency rules
In our framework, when you iterate through

the consistency management process, you
expand and refine the set of consistency rules.
You will never obtain a complete set of rules
covering all possible consistency relationships
in a large project. However, the rule base acts
as a repository for recording those rules that are
known or discovered so that they can be tracked

appropriately.
Consistency rules can emerge from several sources:

• Notation definitions. Many notations have well-
defined syntactic integrity rules. For example, in
a strongly typed programming language, the
notation requires that the use of each variable be
consistent with its declaration.

• Development methods. A method provides a set
of notations, with guidance on how to use them
together. For example, a method for designing
distributed systems might require that for any
pair of communicating subsystems, the data items
to be communicated must be defined consistently
in each subsystem interface.

• Development process models. A process model
typically defines development steps, entry and
exit conditions for those steps, and constraints
on the products of each step.

• Local contingencies. Sometimes a consistency
relationship occurs between descriptions, even
though the notation, method, or process model
does not predetermine this relationship.
Examples include words used as synonyms, and
relationships between timing values in parallel
processes.

• Application domains. Many consistency rules
arise from domain-specific constraints.

Monitoring and diagnosing inconsistency
With an explicit set of consistency rules, monitor-

ing can be automatic and unobtrusive. If certain rules
have a high computational overhead for checking, the
monitoring need not be continuous—the descriptions
can be checked at specific points during development,
using a lazy consistency strategy.4

Our approach defines a scope for each rule, so that
each edit action need be checked only against those rules
that include in their scope the locus of the edit action.

When you find an inconsistency, the diagnosis
process begins. Diagnosis includes

• locating the inconsistency by determining what
parts of a description have broken a consistency
rule;

• identifying the cause of an inconsistency, nor-
mally by tracing back from the manifestation to
the cause; and

• classifying an inconsistency.

Classification is an especially important stage in the
process of selecting a suitable handling strategy.
Inconsistencies can be classified along a number of dif-
ferent dimensions, including the type of rule broken,
the type of action that caused the inconsistency, and
the impact of the inconsistency.

Handling inconsistency
The choice of an inconsistency-handling strategy

depends on the context and the impact it has on other
aspects of the development process. Resolving the
inconsistency may be as simple as adding or deleting
information from a software description. But it often
relies on resolving fundamental conflicts or making
important design decisions. In such cases, immediate
resolution is not the best option. You can ignore, defer,
circumvent, or ameliorate the inconsistency.

Sometimes the effort to fix an inconsistency is sig-
nificantly greater than the risk that the inconsistency
will have any adverse consequences. In such cases, you
may choose to ignore the inconsistency. Good prac-
tice dictates that such decisions should be revisited as
a project progresses or as a system evolves.

Deferring the decision until later may provide you
with more time to elicit further information to facili-
tate resolution or to render the inconsistency unim-
portant. In such cases, flagging the affected parts of
the descriptions is important.

Sometimes software developers won’t regard a
reported inconsistency as an inconsistency. This may
be because the rule is incorrect or because the incon-
sistency represents an exception to the rule. In these
cases, the inconsistency can be circumvented by mod-
ifying the rule or by disabling it for a specific con-
text.

Sometimes, it may be more cost-effective to amelio-
rate an inconsistency by taking some steps toward a
resolution without actually resolving it. This approach
may include adding information to the description that
alleviates some adverse effects of an inconsistency and
resolves other inconsistencies as a side effect.

Measuring inconsistency
For several reasons, measurement is central to effec-

tive inconsistency management. Developers often need
to know the number and severity of inconsistencies in
their descriptions, and how various changes that they
make affect these measures. Developers may also use

The choice of an
inconsistency-

handling strategy
depends on the
context and the
impact it has on

other aspects of the
development

process.

www.manaraa.com

these measures to compare descriptions and assess,
given a choice, which is preferred.

Sometimes developers need to prioritize inconsis-
tencies in different ways to identify inconsistencies
that need urgent attention. They may also need to
assess their progress by measuring their conformance
to some predefined development standard or process
model.

The actions taken to handle inconsistency often
depend on an assessment of the impact these actions
have on the development project. Measuring the
impact of inconsistency-handling actions is therefore
a key to effective action in the presence of inconsis-
tency. You also need to assess the risks involved in
either leaving an inconsistency or handling it in a par-
ticular way.

PRACTICAL INCONSISTENCY MANAGEMENT
To refine the framework, we performed a number

of practical case studies that provided some insights
into the nature of inconsistency and its management.
The first two studies dealt with parts of the require-
ments specifications for the command and control
software for the International Space Station.5,6 The
third case study dealt with the design of a dual-redun-
dant controller for a deep-space probe.7 We based all
three case studies on analysis of existing, evolving
specifications expressed in a mixture of prose, tables,
flowcharts, and other diagrams.

While each case study provided the opportunity to
employ different techniques for analyzing the specifi-
cations, our approach in each case was to re-represent
and restructure the specifications more precisely, more
formally, and at different levels of abstraction. Our
primary goal was to permit more detailed analysis
than would otherwise have been possible.8 These case
studies provided us with several valuable insights.

Lingering inconsistencies
The observation that some inconsistencies never get

fixed seems counterintuitive at first. Although we have
argued that inconsistencies can and should be toler-
ated during the process of developing specifications,
we had always assumed that inconsistencies are tem-
porary; eventually a consistent specification would be
needed as a basis for an implementation. In practice,
this is not true. Many local factors affect how you han-
dle an inconsistency, including the cost of resolution,
the cost of updating the documentation, and the devel-
opers’ level of shared understanding. Ultimately, the
decision to repair an inconsistency is risk-based. If the
cost of fixing it outweighs the risk of ignoring it, then
it makes no sense to fix it.

In our first case study, one section of the specifica-
tion contained a flowchart and some corresponding
textual requirements. The flowchart was intended as

a graphical representation of the text, but as the
specification had evolved, the diagram and text
had diverged. Due to the cost of updating the
documents, the developers chose to ameliorate
this inconsistency by adding a disclaimer that
the text should be regarded as definitive when-
ever it failed to match the diagram. Despite the
inconsistency, developers still found the dia-
gram useful because it provided an overview of
the requirements expressed in the text.

On another occasion, we had a problem with
the analysis models we abstracted from the orig-
inal specifications. These were state machine
models that captured the behavior described in
the original specification. Sometimes our analy-
sis models were inconsistent with either the
specification or the implementation because they did
not cover the same set of behaviors. Despite these
inconsistencies, however, the analysis models were still
extremely useful because they allowed partial checks
of key properties. In some cases the inconsistency
could not be fixed because the formal notation would
not capture certain aspects of the specifications. In
other cases, fixing the formal model would introduce
complexities that could interfere with the analysis.

In both cases, the inconsistency did not need to be
resolved; it was sufficient just to be aware of its exis-
tence. In each case, we based the decision to ignore
the inconsistency on a careful analysis of the risk
involved. If we hadn’t detected the inconsistency, we
couldn’t have performed the risk analysis.

Reevaluating risk
The decision to tolerate an inconsistency is a risk-

based decision. Because risk factors change during the
development process, you have to reevaluate risk peri-
odically. Ideally, you reevaluate risk by monitoring
each unresolved inconsistency for changes in the fac-
tors that affect the decision to tolerate it. In practice,
such monitoring isn’t feasible with current tools, so
the usual approach is to identify key points in the
future at which the decision must be reevaluated.

Consider the Ariane-5 rocket,9 which reused much
of the software from Ariane-4. The project team toler-
ated an inconsistency in Ariane-4 between the safety
requirement that all exceptions be handled, and the
implementation in which some floating-point excep-
tions were left unhandled, to meet memory and perfor-
mance requirements. The analysis concluded, correctly,
that particular exceptions would never occur, so the risk
was minimal. Unfortunately, the Ariane-4 project team
never repeated the risk analysis when they reused the
software in Ariane-5. The decision to tolerate the incon-
sistency was not wrong for Ariane-4, but the lack of
available tools to indicate that the risk needed to be
reevaluated for Ariane-5 proved disastrous.

April 2000 27

The decision
to repair an

inconsistency is
risk-based. If the
cost of fixing it

outweighs the risk
of ignoring it, then
it makes no sense

to fix it.

www.manaraa.com

28 Computer

The Ariane-5 developers did not have a
method to warn them they must revisit deci-
sions when the design parameters changed.
Knowing when and how to reevaluate these
decisions is critical.

Consistency checks
Resolving an inconsistency has a cost asso-

ciated with it that might make it not worth
doing in some cases. And sometimes a consis-
tency check is not worth performing, either.

In our first case study, we discovered an error
with the sequencing of the fault diagnosis steps

in the original specification. The need to apply the steps
in a specific order had not been described in the text,
and without this sequencing they would not work as
intended. We discovered this problem while building a
formal model, which we had planned to use to check
that the fault-handling design was consistent with the
high-level requirements. We made some assumptions
about the correct sequencing and continued to build
the model and perform further consistency checks. In
the meantime, the authors of the original specification
updated it to correct the problem. Their changes were
so major that the consistency checking we had per-
formed on our model became irrelevant.

This observation raises an important question: How
do you know when to apply each consistency check,
and how do you know when to stop checking consis-
tency? The answers to these questions may be project-
specific, although process models may provide some
guidance. As part of our research on guiding the
inconsistency management process, we examined the
conditions under which consistency checking should
and should not be performed, and the mechanisms for
guiding this process.10

Inconsistency is deniable
Our framework relies on a well-defined set of rela-

tionships between descriptions. We once believed that
as long as relationships are precisely defined, consis-
tency could be determined objectively. But we found
that developers often debated whether a reported
inconsistency really was an inconsistency.

Two factors are at work here. People generally don’t
like other people finding fault with their work. The
V&V teams we worked with at NASA strive to main-
tain a collaborative relationship with the developers so
that both parties feel they are working toward the com-
mon goal of creating a high-quality product. Despite
this focus, inconsistency still carries a stigma that
implies poor-quality work. If the V&V team declares an
inconsistency publicly—at a formal review, for exam-
ple—authors tend to become defensive. They may give
an argument for why the inconsistency is not really an
issue or claim that they are already aware of the prob-

lem and have fixed it or are in the process of doing so.
The second factor is a modeling issue. Descriptions

can be inconsistent because one or more of them is inac-
curate or vague. Although we can formalize a description
so that we can say objectively whether it is inconsistent
at the syntactic and semantic levels, it is often possible
to deny the inconsistency at the pragmatic level. In effect,
such a denial questions the formalization of either the
description itself or the consistency rules. This uncer-
tainty sometimes results in a useful discussion of the
descriptions’ nature, which may in turn lead to an
improvement in how the descriptions are expressed. On
the other hand, such denials are sometimes merely obfus-
cation, and it is often hard to tell whether the ensuing
debate will lead to anything useful.

S everal available tools detect inconsistency in dif-
ferent phases of software development. In gen-
eral, each tool concentrates on one particular

type of description and defines consistency narrowly
in terms of integrity rules for that description type.
Such method-specific consistency checking is ex-
tremely useful but covers only a fraction of the range
of consistency relationships that can affect software
development.

Our next step is to develop our framework into a
software development environment in which differ-
ent techniques for inconsistency management11 play
a central role. ❖

Acknowledgments
We thank our colleagues Frank Schneider, John

Hinkle, Dan McCaugherty, and Chuck Neppach, who
all worked on the case studies. We also thank the par-
ticipants at the ICSE-97 workshop on “Living with
Inconsistency” for lively discussions of these ideas.
Nuseibeh and Russo acknowledge the financial sup-
port of the UK EPSRC for the projects MISE (GR/L
55964) and VOICI (GR/M 38582).

References
1. M. Jackson, Software Requirements & Specifications: A

Lexicon of Practice, Principles, and Prejudices, Addi-
son-Wesley, Wokingham, England, 1995.

2. B. Nuseibeh, “To Be and Not to Be: On Managing Incon-
sistency in Software Development,” Proc. Eighth Int’l
Workshop on Software Specification and Design, IEEE
CS Press, Los Alamitos, Calif., 1996, pp. 164-169.

3. B. Nuseibeh, J. Kramer, and A.C.W. Finkelstein, “A
Framework for Expressing the Relationships between
Multiple Views in Requirements Specification,” IEEE
Trans. Software Eng., 1984, pp. 760-773.

4. K. Narayanaswamy and N. Goldman, “Lazy Consis-
tency: A Basis for Cooperative Software Development,”

We once believed
that as long as

relationships are
precisely defined,

consistency could be
determined
objectively.

www.manaraa.com

Proc. 4th Int’l Conf. Computer Supported Cooperative
Work, ACM Press, New York, 1992, pp.257-264.

5. S.M. Easterbrook and J. Callahan, “Formal Methods
for Verification and Validation of Partial Specifications:
A Case Study,” J. Systems and Software, Vol. 40, No. 3,
1998, pp. 199-210.

6. A. Russo, B.A. Nuseibeh, and J. Kramer, “Restructuring
Requirements Specifications for Inconsistency Analysis: A
Case Study,” Third Int’l Conf. Requirements Engineering,
IEEE CS Press, Los Alamitos, Calif., 1998, pp. 51-60.

7. F. Schneider et al., “Validating Requirements for Fault
Tolerant Systems Using Model Checking,” Third Int’l
Conf. Requirements Engineering, IEEE CS Press, Los
Alamitos, Calif., 1998, pp. 4-13.

8. C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw, “Auto-
mated Consistency Checking of Requirements Specifi-
cations,” ACM Trans. Software Engineering and Meth-
odology, ACM Press, New York, Vol. 5, No. 3, 1998,
pp. 231-261.

9. B.A. Nuseibeh, “Ariane 5: Who Dunnit?” IEEE Soft-
ware, Vol. 14, No. 2, 1997, pp. 15-16.

10. U. Leonhardt et al., “Decentralized Process Modeling in
a Multi-Perspective Development Environment,” Proc.
17th Int’l Conf. Software Eng., ACM Press, New York,
1995, pp. 255-264.

11. C. Ghezzi and B. Nuseibeh, “Guest Editorial: Introduc-
tion to the Special Section on Managing Inconsistency
in Software Development,” IEEE Trans. Software Eng.,
1999, pp. 782-783.

Bashar Nuseibeh is a lecturer and head of the soft-
ware engineering laboratory in the Department of
Computing at Imperial College, London. His research
interests include requirements engineering, software
specification, and technology transfer, and he serves as
editor-in-chief of the Automated Software Engineer-
ing Journal. Nuseibeh received a PhD in computer
science from Imperial College. Contact him at ban@
doc.ic.ac.uk.

Steve Easterbrook is an associate professor in the
Department of Computer Science at the University of
Toronto, and he is general chair for the Fifth IEEE Inter-
national Symposium on Requirements Engineering, to
be held in Toronto in 2001. His research interests
include the problems associated with managing conflict
and change in software requirements. Easterbrook
received a PhD in computer science from Imperial Col-
lege in 1991. Contact him at sme@cs.toronto.edu.

Alessandra Russo is research associate in the Depart-
ment of Computing at Imperial College, London. Her
research interests include mathematical logics and their
applications in computer science and software engi-
neering. Russo received a PhD in computer science from
Imperial College. Contact her at ar3@doc.ic.ac.uk.

